当前位置:主页 > 资源 > 技术文章 >

技术文章—实验:PN结电容与电压的关系
栏目分类:技术文章   发布日期:2019-11-25   浏览次数:

在无焊面包板上,按照图2和图3所示构建测试设置。第一步是利用在AWG输出和示波器输入之间连接的已知电容C1来测量未知电容Cm。两个示波器负输入1和2都接地。示波器通道1+输入与AWG1输出W1一起连接到面包板上的同一行。将示波器通道2+插入面包板,且保证与插入

  在无焊面包板上,按照图2和图3所示构建测试设置。第一步是利用在AWG输出和示波器输入之间连接的已知电容C1来测量未知电容Cm。两个示波器负输入1–和2–都接地。示波器通道1+输入与AWG1输出W1一起连接到面包板上的同一行。将示波器通道2+插入面包板,且保证与插入的AWG输出间隔8到10行,将与示波器通道2+相邻偏向AWG1的那一行接地,保证AWG1和示波器通道2之间任何不必要的杂散耦合最小。由于没有屏蔽飞线+两条连接线+连接线设置 与传统光源相比,LED光源为固体冷光源,具有寿命长,光效高,无辐射,功耗低,抗冲击和抗震性能好,可靠性高等特性。在全球提倡绿色照明的今天,LED作为新型绿色照明光源受到全球的追捧。然而,在LED高速发展的同时,如何进一步提高LED的寿命及可靠性确是迫在眉睫的事。本文从理论和实验出发,研究并分析了温度对LED性能的影响,从而提出可以提高LED的寿命和可靠性问题的方法。1 LED发光原理 LED是一种半导体二极管,核心发光部分为P型和N型半导体构成的PN结,LED除了具有一般PN结特性外,还具有发光特性。在正向电压下,电子由N区注入P区.空穴由P区注入N区 使用Scopy软件中的网络分析仪工具获取增益(衰减)与频率(5 kHz至10 MHz)的关系图。示波器通道1为滤波器输入,示波器通道2为滤波器输出。将AWG偏置设置为1 V,幅度设置为200 mV。测量一个简单的实际电容时,偏置值并不重要,但在后续步骤中测量二极管时,偏置值将会用作反向偏置电压。纵坐标范围设置为+1 dB(起点)至–50 dB。运行单次扫描,然后将数据导出到.csv文件。您会发现存在高通特性,即在极低频率下具有高衰减,而在这些频率下,相比R1,电容的阻抗非常大。在频率扫描的高频区域,应该存在一个相对较为平坦的区域,此时,C1、Cm容性分压器的阻抗要远低于R1。 增加PN结上的反向偏置电压VJ会导致连接处电荷的重新分配,形成耗尽区或耗尽层(图1中的W)。这个耗尽层充当电容的两个导电板之间的绝缘体。这个W层的厚度与施加的电场和掺杂浓度呈函数关系。PN结电容分为势垒电容和扩散电容两部分。在反向偏置条件下,不会发生自由载流子注入;因此,扩散电容等于零。对于反向和小于二极管开启电压(硅芯片为0.6 V)的正偏置电压,势垒电容是主要的电容来源。在实际应用中,根据结面积和掺杂浓度的不同,势垒电容可以小至零点几pF,也可以达到几百pF。结电容与施加的偏置电压之间的依赖关系被称为结的电容-电压(CV)特性。在本次实验中,您将测量各个PN结(二极管)此特性的值,【教程】帝国CMS制作网站系列,并绘制数值图。 在表1剩余的部分,填入各偏置电压值的GHF值,然后使用Cm值和步骤1中的公式来计算Cdiode的值。 有奖直播:Microchip适用于CryptoAuthentication系列的可信任平台 我们经常会碰到LED不亮的情况,封装企业、应用企业以及使用的单位和个人,都有可能碰到,这就是行业内的人说的死灯现象。究其原因不外是两种情况: 其一,LED的漏电流过大造成PN结失效,使LED灯点不亮,这种情况一般不会影响其它的LED灯的工作; 其二,LED灯的内部连接引线断开,造成LED无电流通过而产生死灯,这种情况会影响其它的LED灯的正常工作,原因是由于LED灯工作电压低(红黄橙LED工作电压1.8V-2.2V,蓝绿白LED工作电压2.8-3.2V),一般都要用串、并联来联接,来适应不同的工作电压,串联的LED灯越多影响越大,只要其中有一个LED灯内部连线开路,将造成该串联电路的整串LED灯不亮,可见这种情况 使用Scopy软件中的网络分析仪工具获取表1中各AWG 1 DC偏置值时增益(衰减)与频率(5 kHz至10 MHz)的关系图。将每次扫描的数据导出到不同的.csv文件。 发光二极管或LED也是PN结。它们是由硅以外的材料制成的,所以它们的导通电压与普通二极管有很大不同。但是,它们仍然具有耗尽层和电容。为了获得额外加分,请和测量普通二极管一样,测量ADALM2000模拟器套件中的红色、黄色和绿色LED。在测试设置中插入LED,确保极性正确,以便实现反向偏置。如果操作有误,LED有时可能会亮起。 ,一般在实验中很难观察到它的存在。目前国内外对于散粒噪声测试技术的研究取得了很大的进展,但是普遍存在干扰噪声大、测试仪器价格昂贵等问题,难以实现普及应用。本文所介绍的测试系统是在屏蔽环境下将被测器件置于低温装置内,抑制了外界电磁波和热噪声的干扰;同时使用低噪声前置放大器使散粒噪声充分放大并显著降低系统背景噪声显著;通过提取噪声频谱高频段平均值,去除了低频1/f噪声的影响,使测试结果更加的准确。使用本系统测试二极管散粒噪声,得到了很好的测试结果。 本文的工作为散粒噪声测试提供了一种新的有效方法,并运用此测试系统测试了PN结二极管散粒噪声,得到了很好的测试结果。1 测试原理 使用ADALM2000套件中的1N3064二极管替换1N4001二极管,然后重复对第一个二极管执行的扫描步骤。将测量数据和计算得出的Cdiode值填入另一个表。与1N4001二极管的值相比,1N3064的值有何不同?您应该附上您测量的各二极管的电容与反向偏置电压图表。 本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。 【看电源研讨会,瓜分3000元红包】 如何正确完成模块化DC-DC系统设计 推荐阅读中国学者实现二维原子晶体双层垂直pn结大面积可控制备电子网消息,据湖南大学报到,近年来,二维层状半导体由于其新奇的物理和结构性质,显示出具有应用于下一代电子与光电集成系统的极大潜能。相较于单纯的二维材料,二维层状材料的异质结由于具有原子层厚度的陡峭界面,以及可调控的能带排列结构,更适合实现多功能的片上集成,引起了广泛关注。然而,现有的研究大多都停留在采用机械剥离再堆垛的方法得到垂直异质结,而这种方法由于得到的异质结形状尺寸不可控制,极大地限制了其未来的应用发展。相比较而言,通过直接生长的方法得到的异质结具有形状尺寸可控,界面更加干净等优势,更加具有应用的潜力。但是,直接生长大尺寸高质量的二维原子层状垂直异质结,尤其是p-n异质结,仍然是科学界的一大难题。 日前,湖南大学微纳信息器件 综合电流注入效率、辐射发光量子效率、芯片外部光取出效率等,最终大概只有30-40%的输入电能转化为光能,其余60-70%的能量主要以非辐射复合发生的点阵振动的形式转化热能。而芯片温度的升高,则会增强非辐射复合,进一步消弱发光效率。因为,人们主观上认为大功率LED没有热量,事实上确有。大量的热,以至于在使用过程中发生问题。加上很多初次使用大功率LED的人,对热问题又不懂如何有效地解决,使得产品可靠性成为主要问题。那么,LED究竟有没有热量产生呢?能产生多少热量呢?LED产生的热量究竟有多大?LED在正向电压下,电子从电源获得能量,在电场的驱动下,克服PN结的电场,由N区跃迁到P区,这些电子与P区的空穴发生复合。由于漂移 【世健的ADI之路主题游】 第三站:了解物联网前沿器件与方案,打卡赢Kindle、《新概念模拟电路》 我们选择让C1远大于Cstray,这样可以在计算中忽略Cstray,但是计算得出的值仍与未知的Cm相近。 当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增 加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示, PN结的反向击穿有雪崩击穿和齐纳击穿两种。1、雪崩击穿:阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电 子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。2、齐纳击穿:当PN结两边掺杂浓度很高时,阻挡层

相关热词: 技术文章

Copyright © 2002-2020 www.antitrades.com 王中王资料精选 版权所有    粤ICP备88888888号   关于我们 | 广告合作 | 版权声明 | 意见反馈 | 联系方式 | 原创投稿 | 网站地图 |
特效 教程 资源 资讯